Giải phương trình:(Nhớ tìm điều kiện)
a) \(\sqrt{2x-1}=\sqrt{5}\)
b)\(\sqrt{x-5}\) = 3
c)\(\sqrt{4x^2+4x+1}=6\)
d)\(\sqrt{\left(x-3\right)^2}=3-x\)
e)\(\sqrt{2x+5}=\sqrt{1-x}\)
f)\(\sqrt{x^2-x}=\sqrt{3-x}\)
g)\(\sqrt{2x^2-3}=\sqrt{4x-3}\)
h)\(\sqrt{2x-5}=\sqrt{x-3}\)
i)\(\sqrt{x^2-x+6}=\sqrt{x^2+3}\)
Bài 1 GIẢI PHƯƠNG TRÌNH:
a) \(\sqrt{x-5}=\sqrt{3-x}\)
b) \(\sqrt{4-5x}=\sqrt{2-5x}\)
c) x2+4x+5=2\(\sqrt{2x+3}\)
d) \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
Tìm x biết,
a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
b) \(\sqrt{x^2-4}-2\sqrt{x-2}\)=0
c)\(\sqrt{\frac{2x-3}{x-1}}=2\)
d) \(\sqrt{\frac{4x+3}{x+1}}=3\)
e)\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
f)\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\)
giải các phương trình sau:
a) \(\sqrt{4x^2-9}=\sqrt{2x-3}\)
b) \(\sqrt{x^2-1}-\sqrt{x-1}=0\)
Giải phương trình
a) \(10\sqrt{x^3+1}=3\left(x^2+2\right)\) f) \(\sqrt{x^3+1}=2x^2+x+5\)
b) \(5\sqrt{x^3+1}=2\left(x^2+2\right)\)
c) \(3\sqrt{x^3+1}=2x^2-x+3\)
d) \(\sqrt{x^3+1}=-3x^2+5x-1\)
e) \(5\sqrt{x^3+1}=4x^2-3x+5\)
Mọi người giải giúp em với sáng mai em nộp rồi
Giải phương trình:
1. \(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
3. \(x^2+x+12\sqrt{x+1}=36\)
4. \(\sqrt{x+2}-\sqrt{x-6}=2\)
5. \(\sqrt[3]{x-1}-\sqrt[3]{x-3}=\sqrt[3]{2}\)
6. \(5\sqrt{1+x^3}=2\left(x^2+2\right)\)
6. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
Tìm x :
a, \(\sqrt{x^2-2x}=\sqrt{2-3x}\)
b, \(\sqrt{x-3}-2\sqrt{x^2-9}=0\)
c, \(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=4\)
d, \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
e, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
f, \(\sqrt{x^2-4}-x+2=0\)
Giải các pt sau:
1) \(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
2) \(2\sqrt{x+3}=9x^2-x-4\)
3) \(1+\dfrac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
4) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
5) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
tìm giá trị nhỏ nhất của
A=\(\sqrt{\left(x+2\right)^2}+\sqrt{\left(x+3\right)^2}=5\)
B=\(\sqrt[]{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}}\)
C=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x+\sqrt{4x-1}}\)