\(6x^4-x^3-7x^2+x+1=0\)
\(\Leftrightarrow\left(6x^4-6x^3\right)+\left(5x^3-5x^2\right)+\left(-2x^2+2x\right)+\left(-x+1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left(6x^3+5x^2-2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(6x^3-3x^2\right)+\left(8x^2-4x\right)+\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[3x^2\left(2x-1\right)+4x\left(2x-1\right)+\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(3x^2+4x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left[\left(3x^2+3x\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left[3x\left(x+1\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(x+1\right)\left(3x+1\right)=0\)
\(\left\{{}\begin{matrix}x-1=0\\2x-1=0\\x+1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\x=-1\\x=-\dfrac{1}{3}\end{matrix}\right.\)