ĐKXĐ...
Đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=a\\\sqrt{1-x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=2\)
\(2a^3=\left(a+b\right)\left(a^2+b^2-ab\right)\)
\(\Leftrightarrow2a^3=\left(a+b\right)^3\)
\(\Leftrightarrow a\sqrt[3]{2}=a+b\)
\(\Leftrightarrow a\left(\sqrt[3]{2}-1\right)=b\)
\(\Rightarrow\sqrt{1+x}\left(\sqrt[3]{2}-1\right)=\sqrt{1-x}\)
\(\Leftrightarrow\left(1+x\right)\left(\sqrt[3]{2}-1\right)^2=1-x\)
\(\Rightarrow x=\frac{1-\left(\sqrt[3]{2}-1\right)^2}{\left(\sqrt[3]{2}-1\right)^2+1}\)