b) ĐKXĐ:\(\left\{{}\begin{matrix}x^2+4x+3\ne0\\x^2+8x+15\ne0\end{matrix}\right.=>\left\{{}\begin{matrix}x\ne-1\\x\ne-3\end{matrix}\right.\)
1/x2+4x+3+1/x2+8x+15=16
⇔1(x+1)(x+3)+1(x+3)(x+5)=16
⇔(x+5)+(x+1)(x+1)(x+3)(x+5)=16
⇔2(x+3)(x+1)(x+3)(x+5)=16
<=>(x+1)(x+5)=12
<=>x2+6x−7=0
<=>(x−1)(x+7)=0
<=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=1\left(nh\text{ậ}n\right)\\x=-7\left(nh\text{ậ}n\right)\end{matrix}\right.\)
S=\(\left\{1;-7\right\}\)