phương trình \(\sqrt{x+4}+\sqrt{x-1}=2\) phương trình S có tập nghiệm là gì
cho phương trình \(x^2-\left(2m+3\right)x+2m+5=0\)
tìm m để phương trình có 2 nghiệm dương phân biệt x1;x2 thỏa mãn \(\dfrac{1}{\sqrt{x1}}+\dfrac{1}{\sqrt{x2}}=\dfrac{4}{3}\)
a) Tính giá trị của biểu thức: A=\(\dfrac{\sqrt{\dfrac{5}{2}-\sqrt{6}}+\sqrt{\dfrac{5}{2}+\sqrt{6}}}{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}\)
b) Cho biểu thức B=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\times\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{\sqrt{x}+x}{\sqrt{x}+1}\right)\)(với x≥0;x≠1)
Rút gọn B rồi tìm điều kiện của x để B<0
P=\(\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
Rút gọn P
Tìm x để P=5
Tìm x để p>0
Tính P tại x=5-2\(\sqrt{6}\)
bài 1 tính
a)\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{2-\sqrt{8}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}\right):\sqrt{5}\)
bài 2 A = \(\left(\dfrac{X+3}{\sqrt{X}+1}-\sqrt{X}\right):\left(\dfrac{9-\sqrt{X}}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a)tìm Amin
b)tìm x nguyên đẻ a nguyên
c) tìm x dể a nguyên
P = \(\dfrac{\sqrt{a}-1}{3\sqrt{a}+\left(\sqrt{a}-1\right)^2}-\dfrac{6-2\left(\sqrt{a}-1\right)^2}{a\sqrt{a}-1}+\dfrac{2}{\sqrt{a}-1}\)
Rút gon P
Tìm x để P=1
Tính P tại x=\(7-2\sqrt{6}\)
giải pt:
\(5\sqrt{x-1}+9\sqrt{x+1}=8x+6\)
cho biểu thức A=1-\(\frac{\sqrt{x}}{\sqrt{x}+1}\) và B=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\)
1, rút gọn B
2, tìm x để B>0
2, cho P=\(\frac{A}{B}\) tìm x để 2P=\(2\sqrt{x}-9\)
P =\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
Rút gọn P
Tìm x để P=3
Tính P tại x=7+\(2\sqrt{3}\)
tìm x để P >3