§1. Đại cương về phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn hữu thắng

giải hpt

xy+x2=1+y

yx+y2=1+x

Rimuru tempest
9 tháng 12 2018 lúc 18:19

\(\left\{{}\begin{matrix}xy+x^2=1+y\\xy+y^2=1+x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-y^2=y-x\\xy+x^2=1+y\end{matrix}\right.\) ( lấy trên trừ dưới )

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\\xy+x^2=1+y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x+y+1\right)=0\\xy+x^2=1+y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\\xy+x^2=1+y\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\xy+x^2=1+y\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-1\\xy+x^2=1+y\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x^2=1+x\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-1\\x\left(x+y\right)-y-1=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\2x^2-x-1=0\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-1\\-x-y-1=0\end{matrix}\right.\end{matrix}\right.\)

ta có \(\left\{{}\begin{matrix}x+y=-1\\-x-y-1=0\end{matrix}\right.\left(đúng\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy


Các câu hỏi tương tự
Huệ Tuấn
Xem chi tiết
lu nguyễn
Xem chi tiết
Huệ Tuấn
Xem chi tiết
Miner Đức
Xem chi tiết
Huệ Tuấn
Xem chi tiết
Hung Luong
Xem chi tiết
Yến Hoàng
Xem chi tiết
Huệ Tuấn
Xem chi tiết
Kazuto Kirigaya
Xem chi tiết