Đặt A = \(\left(100+\dfrac{99}{2}+\dfrac{98}{3}+...+\dfrac{1}{100}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}\right)-2\)
\(=\dfrac{\left(1+\left(\dfrac{99}{2}+1\right)+\left(\dfrac{98}{3}+1\right)+...+\left(\dfrac{1}{100}+1\right)\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
\(=\dfrac{\left(\dfrac{101}{101}+\dfrac{101}{2}+\dfrac{101}{3}+...+\dfrac{101}{100}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
\(=\dfrac{100\left(\dfrac{1}{101}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
= 100 - 2 = 98