Bài 1:
a) 3x + 9 = 0
⇔ 3x = - 9
⇔ x = - 3.
b) 2.(3x - 7) + 4x = 7x - 3
⇔ 6x - 14 + 4x = 7x - 3
⇔ 3x = 11
⇒ x = \(\frac{11}{3}\).
c) \(\frac{5x-4}{2}\) = \(\frac{16x+1}{7}\)
⇔ 7.(5x - 4) = 2.(16x + 1)
⇔ 35x - 28 = 32x + 2
⇔ 3x = 30
⇒ x = 10.
d) x2 + 5x + 6 = 0 (*)
Δ = b2 - 4ac
= 52 - 4.1.6
= 1 > 0
⇒ Phương trình (*) có hai nghiệm phân biệt:
x1 = \(\frac{-b+\sqrt{\Delta}}{2a}\) = \(\frac{-5+\sqrt{1}}{2.1}\) = - 2
x2 = \(\frac{-b-\sqrt{\Delta}}{2a}\) = \(\frac{-5-\sqrt{1}}{2.1}\) = - 3
Vậy ...
e) x2 - x - 6 = 0 (1)
Δ = b2 - 4ac
= (- 1)2 - 4.1.(- 6)
= 25 > 0
⇒ Phương trình (1) có hai nghiệm phân biệt:
x1 = \(\frac{-b+\sqrt{\Delta}}{2a}\) = \(\frac{-\left(-1\right)+\sqrt{25}}{2.1}\) = 3
x2 = \(\frac{-b-\sqrt{\Delta}}{2a}\) = \(\frac{-\left(-1\right)-\sqrt{25}}{2.1}\) = - 2
Vậy ...
Bài 2:
a) - 2x + 3 ≤ 0
⇔ - 2x ≤ - 3
⇒ x ≥ \(\frac{3}{2}\)
b) 3x + 1 ≥ 2(x - 1) + 5
⇔ 3x + 1≥ 2x - 2 + 5
⇔ x ≥ 2
c) x2 - 3x + 2 ≤ 0
⇔ (x - 2).(x - 1) ≤ 0
⇒ \(\left\{{}\begin{matrix}x-2\le0\\x-1\ge0\\x-2\ge0\\x-1\le0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x\le2\\x\ge1\\x\ge2\\x\le1\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2\ge x\ge1\\1\ge x\ge2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x\in\left\{2,1\right\}\\x\ne\left\{1,2\right\}\end{matrix}\right.\) (2 trường hợp)
d) x2 - 6x + 8 ≥ 0
⇔ (x - 4).(x - 2) ≥ 0
⇒ \(\left\{{}\begin{matrix}x-4\ge0\\x-2\ge0\\x-4\le0\\x-2\le0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x\ge4\\x\ge2\\x\le4\\x\le2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x\ge4\\x\le2\end{matrix}\right.\) (2 trường hợp)
e) \(\frac{2x+1}{x+2}\) ≤ 1 (điều kiện: x ≠ -2)
⇔ \(\frac{2x+1}{x+2}\) - 1 ≤ 0
⇔ \(\frac{\left(2x+1\right)-\left(x+2\right)}{x+2}\) ≤ 0
⇔ \(\frac{x-1}{x+2}\) ≤ 0
⇒ \(\left\{{}\begin{matrix}x-1\le0\\x+2\ge0\\x-1\ge0\\x+2\le0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x\le1\\x\ge-2\\x\ge1\\x\le-2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}1\ge x\ge-2\\-2\ge x\ge1\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x\in\left\{1,0,-1,-2\right\}\\x\ne\left\{1,0,-1,-2\right\}\end{matrix}\right.\) (2 trường hợp)
Bài 3:
a) A = x2 + 10x + 40
= x2 + 2.5.x + 52 + 15
= (x + 5)2 + 15
Ta có: (x + 5)2 ≥ 0 ∀ x
⇔ (x + 5)2 + 15 ≥ 15 ∀ x
⇔ A ≥ 15 ∀ x
Dấu "=" xẩy ra ⇔ x = 5
Vậy ...