ĐKXĐ: \(x;y\ge\frac{-1}{2}\)
\(\left(3x+2y\right)\left(y+1\right)+x^2-4=0\)
\(\Leftrightarrow3xy+3x+2y^2+2y+x^2-4=0\)
\(\Leftrightarrow x^2+2xy+4x+2y^2+xy+4y-x-2y-4=0\)
\(\Leftrightarrow x\left(x+2y+4\right)+y\left(2y+x+4\right)-\left(x+2y+4\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x+2y+4\right)=0\)
Do \(x;y\ge\frac{-1}{2}\Rightarrow x+2y+4>0\)
\(\Rightarrow x+y-1=0\Rightarrow y=1-x\)
Thay vào pt đầu:
\(\sqrt{2x+1}+\sqrt{3-2x}=\frac{\left(2x-1\right)^2}{2}\)
Do \(\left\{{}\begin{matrix}2x+1\ge0\\3-2x\ge0\end{matrix}\right.\) \(\Rightarrow\frac{-1}{2}\le x\le\frac{3}{2}\Rightarrow-2\le2x-1\le2\)
\(\Rightarrow\left(2x-1\right)^2\le4\Rightarrow VP\le2\)
Mặt khác áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:
\(\sqrt{2x+1}+\sqrt{3-2x}\ge\sqrt{2x+1+3-2x}=2\)
\(\Rightarrow VT\ge2\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left[{}\begin{matrix}2x+1=0\\3-2x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-1}{2};y=\frac{3}{2}\\x=\frac{3}{2};y=\frac{-1}{2}\end{matrix}\right.\)