1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)
b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)
d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)
e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)
f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)
g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)
2. a) \(\left\{{}\begin{matrix}x,y,z>1\\x+y+z=xyz\end{matrix}\right.\) Tìm min \(P=\frac{x-1}{y^2}+\frac{y-1}{z^2}+\frac{z-1}{x^2}\)
b) \(a,b,c>0.Cmr:\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
c) \(\left\{{}\begin{matrix}x,y,z\ge0\\x^2+y^2+z^2=2\end{matrix}\right.\) Tìm max \(P=\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}-\frac{1+yz}{9}\)
d) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{ab+3c}+\frac{b}{bc+3a}+\frac{c}{ca+3b}\ge\frac{3}{4}\)
1. \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) Cmr: \(\frac{x^2}{\left(x+1\right)^2}+\frac{y^2}{\left(y+1\right)^2}+\frac{z^2}{\left(z+1\right)^2}\ge\frac{3}{4}\)\
2. \(a,b,c>0.\) cmr: \(\Sigma\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\le\frac{1}{a+b+c}\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=\\2\sqrt{x}+5\sqrt{y}+10\sqrt{z}=\sqrt{xyz}\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=12\\2\sqrt{x}+5\sqrt{y}+10\sqrt{z}=\sqrt{xyz}\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=12\\2\sqrt{x}+5\sqrt{y}+10\sqrt{z}=\sqrt{xyz}\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=12\\2\sqrt{x}+5\sqrt{y}+10\sqrt{z}=\sqrt{xyz}\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=5\\\frac{2}{xy}-\frac{1}{z^2}-20=5\end{matrix}\right.\)
Giải hệ phương trình :
1, \(\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{4}{x}+\frac{1}{y-2}=1\end{matrix}\right.\)
2 , \(\left\{{}\begin{matrix}\frac{2}{2x-y}-\frac{1}{x+y}=0\\\frac{3}{2x-y}-\frac{6}{x+y}=-1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-2y\right)-15\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}2x+y=7\\-x+4y=10\end{matrix}\right.\)