giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^2\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=-x^2\left(x^4+1-2x^2-2xy^2\right)\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\sqrt{x-1}+\sqrt{x}\left(3\sqrt{x}-y\right)+x\sqrt{x}=3y+\sqrt{y-1}\\3xy^2+4=4x^2+2y+x\end{matrix}\right.\)
giúp mik giải bài hệ pt vs ạ!
1,\(\left\{{}\begin{matrix}x^2+y^2+\dfrac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}2x^3+xy^2+x=y^3+4x^2y+2y\\\sqrt{4x^2+x+6}-5\sqrt{1+2y}=1-4y\end{matrix}\right.\)
3,\(\left\{{}\begin{matrix}2x^2+\sqrt{2}x=\left(x+y\right)y+\sqrt{x+y}\\\sqrt{x-1}+xy=\sqrt{y^2+21}\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}\sqrt{9y^2+\left(2y+3\right)\left(y-x\right)}+4\sqrt{xy}=7x\\\left(2y-1\right)\sqrt{1+x}+\left(2y+1\right)\sqrt{1-x}=2y\end{matrix}\right.\)
giải giúp mik bt này vs mn!
1)\(\left\{{}\begin{matrix}2x^2+y^2+x=3\left(xy+1\right)+2y\\\dfrac{2}{3+\sqrt{2x-y}}+\dfrac{2}{3+\sqrt{4-5x}}=\dfrac{9}{2x-y+9}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\left(x+3y+1\right)\sqrt{2xy+2y}=y\left(3x+4y+3\right)\\\left(\sqrt{x+3}-\sqrt{2y-2}\right)\left(x-3+\sqrt{x^2+x+2y-4}\right)=4\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}\sqrt{2x-3}=\left(y^2+2011\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3+2x^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14=x-2}\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\left(x+3y+1\right)\sqrt{2xy+2y}=y\left(3x+4y+3\right)\\\left(\sqrt{x-3}-\sqrt{2y-2}\right)\left(x-3+\sqrt{x^2+x+2y-4}\right)=4\end{matrix}\right.\)
giải hệ pt:
\(\left\{{}\begin{matrix}\sqrt{2x+y-1}-\sqrt{x+2y-2}+x-y+1=0\\4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}\end{matrix}\right.\)
Giải hệ
a) \(\left\{{}\begin{matrix}x^2\left(y^2+1\right)+2y\left(x^2+x+1\right)=3\\\left(x^2+x\right)\left(y^2+y\right)=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(6x+5\right)\sqrt{2x+1}-2y-3y^3=0\\y+\sqrt{x}=\sqrt{2x^2+4x-23}\end{matrix}\right.\)
Giải bất pt
\(\dfrac{9}{\left|x-5\right|-3}\ge\left|x-2\right|\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(x+y-3\right)^3=4y^3\left(x^2y^2+xy+\frac{45}{4}\right)\\x+4y-3=2xy^2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2+8y+4=8x\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}2x+5y=xy+2\\x^2+4y+21=y^2+10x\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}2y^3+7y+2x\sqrt{1-x}=3\sqrt{1-x}+3\left(2y^2+1\right)\\\sqrt{2y^2-4y+3}=5-y+\sqrt{x+4}\end{matrix}\right.\)
Giải hệ
a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-2y^2=1\\2y^2-3z^2=1\\xy+yz+zx=1\end{matrix}\right.\left(x,y,z\in R\right)}\)