\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{2x+y}+\sqrt{x-2y+1}=5\\2\sqrt{x-2y+1}=4\left(2x+y\right)-3\left(x-2y+1\right)+12\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{x-2y+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3a+b=5\\2b=4a^2-3b^2+12\end{matrix}\right.\)
\(\Rightarrow2\left(5-3a\right)=4a^2-3\left(5-3a\right)^2+12=0\)
\(\Rightarrow a=...\Rightarrow b=...\)