Lời giải:
Lấy PT(1) cộng PT(2) thu được:
\(2x^3-x^2-2xy-3xy^2-y^2-y^3-1=0\)
\(\Leftrightarrow (2x^3-3xy^2-y^3)-(x^2+2xy+y^2)-1=0\)
\(\Leftrightarrow [2x^2(x+y)-2xy(x+y)-y^2(x+y)]-(x+y)^2-1=0\)
\(\Leftrightarrow (2x^2-2xy-y^2)(x+y)-(x+y)^2-1=0\)
\(\Leftrightarrow 2(x+y)-(x+y)^2-1=0\)
\(\Leftrightarrow -(x+y-1)^2=0\Rightarrow x+y=1\Rightarrow y=1-x\)
Thay vào PT(1) ta có:
\(2x^2-2x(1-x)-(1-x)^2=2\)
\(\Leftrightarrow 3x^2-3=0\Rightarrow x=\pm 1\)
\(x=1\Rightarrow y=0; x=-1\Rightarrow y=2\) (thỏa mãn)
Vậy $(x,y)=(1,0); (-1,2)$