\(M=\left[\left(\dfrac{2}{193}-\dfrac{3}{386}\right)\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{2001}+\dfrac{11}{4002}\right)\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(M=\left[\left(\dfrac{4}{386}-\dfrac{3}{386}\right)\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{14}{4002}+\dfrac{11}{4002}\right)\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(M=\left(\dfrac{1}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right):\left(\dfrac{25}{4002}\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right)\)
\(M=\left(\dfrac{1}{34}+\dfrac{33}{34}\right):\left(\dfrac{1}{2}+\dfrac{9}{2}\right)\)
\(M=1:5\)
\(M=\dfrac{1}{5}\)
\(=\left[\dfrac{4-3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{25}{4002}\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{1}{34}+\dfrac{33}{34}\right):\left[\dfrac{1}{2}+\dfrac{9}{2}\right]\)
=1/5