a/
\(\Leftrightarrow4sin^3x+6\sqrt{2}sinx.cosx-8sinx=0\)
\(\Leftrightarrow2sinx\left(2sin^2x+3\sqrt{2}cosx-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\2sin^2x+3\sqrt{2}cosx-4=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\left(1-cos^2x\right)+3\sqrt{2}cosx-4=0\)
\(\Leftrightarrow-2cos^2x+3\sqrt{2}cosx-2=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=\sqrt{2}>1\left(l\right)\\cosx=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{\pi}{4}+k2\pi\)
b/
\(\Leftrightarrow4cos^3x+8sinx.cosx-7cosx=0\)
\(\Leftrightarrow cosx\left(4cos^2x+8sinx-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\\4cos^2x+8sinx-7=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4\left(1-sin^2x\right)+8sinx-7=0\)
\(\Leftrightarrow-4sin^2x+8sinx-3=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{3}{2}\left(l\right)\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
c/
ĐKXĐ; ...
\(\Leftrightarrow\frac{sinx}{cosx}+\frac{cosx}{sinx}-5+\frac{3}{sin^22x}=0\)
\(\Leftrightarrow\frac{sin^2x+cos^2x}{sinx.cosx}-5+\frac{3}{sin^22x}=0\)
\(\Leftrightarrow\frac{3}{sin^22x}+\frac{2}{sin2x}-5=0\)
Đặt \(\frac{1}{sin2x}=t\Rightarrow3t^2+2t-5=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{sin2x}=1\\\frac{1}{sin2x}=-\frac{5}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{3}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(-\frac{3}{5}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(-\frac{3}{5}\right)+k\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow5\left(1+cosx\right)=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow5\left(1+cosx\right)=2+sin^2x-cos^2x\)
\(\Leftrightarrow5+5cosx=2+1-cos^2x-cos^2x\)
\(\Leftrightarrow2cos^2x+5cosx+2=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)
e/
\(\Leftrightarrow1+cos2x+1+cos4x+1+cos6x=3+3cosx.cos4x\)
\(\Leftrightarrow cos2x+cos6x+cos4x-3cosx.cos4x=0\)
\(\Leftrightarrow2cos4x.cos2x+cos4x-3cosx.cos4x=0\)
\(\Leftrightarrow cos4x\left(2cos2x+1-3cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\\2cos2x-3cosx+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\left(2cos^2x-1\right)-3cosx+1=0\)
\(\Leftrightarrow4cos^2x-3cosx-1=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arccos\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)