a/ \(\Leftrightarrow2x^3+9x^2-27=0\)
\(\Leftrightarrow2x^3+12x^2+18x-3x^2-18x-27=0\)
\(\Leftrightarrow2x\left(x^2+6x+9\right)-3\left(x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+3\right)^2=0\)
\(\Leftrightarrow...\)
b/ \(\Leftrightarrow x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8\)
\(\Leftrightarrow x^3-3x^2-3x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+x+1\right)=0\)
c/ \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(x^2+x=t\)
\(t\left(t-2\right)-24=0\Leftrightarrow t^2-2t-24=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x=6\\x^2+x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+4=0\end{matrix}\right.\)
d/ \(\Leftrightarrow\left(x-7\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)-72=0\)
\(\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\)
Đặt \(x^2-9x+14=0\)
\(t\left(t+6\right)-72=0\Leftrightarrow t^2+6t-72=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-9x+14=6\\x^2-9x+14=-12\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-9x+8=0\\x^2-9x+26=0\end{matrix}\right.\)