1/
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow15\sqrt{\left(x-1\right)\left(x^2+x+1\right)}=4\left(x^2+2\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\ge0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow15ab=4\left(b^2-a^2\right)\)
\(\Leftrightarrow4a^2+15ab-4b^2=0\)
\(\Leftrightarrow\left(a+4b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow4a=b\Leftrightarrow4\sqrt{x-1}=\sqrt{x^2+x+1}\)
\(\Leftrightarrow x^2-15x+17=0\) (bấm máy)
b/ ĐKXĐ: \(x\ge\frac{3}{2}\)
\(\Leftrightarrow\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\frac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\\frac{1}{\sqrt{2x-3}+\sqrt{x}}=2\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2x-3}+\sqrt{x}=\frac{1}{2}\)
Do \(x\ge\frac{3}{2}\Rightarrow\left\{{}\begin{matrix}\sqrt{2x-3}\ge0\\\sqrt{x}>1\end{matrix}\right.\)
\(\Rightarrow VT>1>\frac{1}{2}\Rightarrow\left(1\right)\) vô nghiệm
Vậy pt có nghiệm duy nhất \(x=3\)
3/
\(\Leftrightarrow\sqrt{2x-\frac{5}{x}}-\sqrt{x-\frac{1}{x}}+x-\frac{4}{x}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x-\frac{5}{x}}=a\ge0\\\sqrt{x-\frac{1}{x}}=b\ge0\end{matrix}\right.\)
\(\Rightarrow x-\frac{4}{x}=a^2-b^2\)
Phương trình trở thành:
\(a-b+a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow\sqrt{2x-\frac{5}{x}}=\sqrt{x-\frac{1}{x}}\)
\(\Rightarrow2x-\frac{5}{x}=x-\frac{1}{x}\)
\(\Rightarrow x^2=4\Rightarrow x=\pm2\)
Do ko tìm ĐKXĐ nên bạn cần thay nghiệm vào pt ban đầu để thử lại
4/
ĐKXĐ: \(x\ge\frac{1}{5}\)
\(\Leftrightarrow\frac{4x-3}{\sqrt{5x-1}+\sqrt{x+2}}=\frac{4x-3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\Rightarrow x=\frac{3}{4}\\\sqrt{5x-1}+\sqrt{x+2}=5\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{5x-1}-3+\sqrt{x+2}-2=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-1}+3}+\frac{x-2}{\sqrt{x+2}+2}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-1}+3}+\frac{1}{\sqrt{x+2}+2}\right)=0\)
\(\Leftrightarrow x=2\)
5/
Đặt \(\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=a\ge0\\\sqrt{\frac{6}{x}-2x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+b^2=\frac{3}{x}\)
Pt trở thành:
\(a-1=\frac{a^2+b^2}{2}-b\)
\(\Leftrightarrow a^2+b^2-2a-2b+2=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=1\\\sqrt{\frac{6}{x}-2x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-x-3=0\\2x^2+x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{3}{2}\)