Giải các phương trình lượng giác sau:
a, sin2x=1
b, \(\frac{sinx-1}{cos2x+1}=0\)
c, sin(3x-\(\frac{\pi}{6}\)) = \(\frac{\sqrt{3}}{2}\)
d, sin(3x-2)=-1
e, sin3x-cos2x=0
f, sin(2x+ \(\frac{\pi}{3}\)) = tan\(\frac{\pi}{3}\)
g, sin(\(3x-\frac{5\pi}{6}\))
Tính giá trị gần đúng của các nghiệm sau:
sin(2x+ \(\frac{\pi}{6}\))= \(\frac{2}{5}\)trong khoảng (\(-\frac{\pi}{3}\); \(\frac{\pi}{6}\))
@Nguyễn Việt Lâm giúp em với ạ
a.
\(\Leftrightarrow1-cos^2x=1\)
\(\Leftrightarrow cos^2x=0\)
\(\Leftrightarrow cosx=0\)
\(\Leftrightarrow x=\frac{\pi}{2}+k\pi\)
b.
ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow sinx-1=0\)
\(\Leftrightarrow sinx=1\)
\(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\) (ktm ĐKXĐ)
Vậy pt vô nghiệm
c.
\(sin\left(3x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{6}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
d.
\(\Leftrightarrow3x-2=-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{2}{3}-\frac{\pi}{6}+\frac{k2\pi}{3}\)
e.
\(sin3x=cos2x\)
\(\Leftrightarrow sin3x=sin\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\frac{\pi}{2}-2x+k2\pi\\3x=\frac{\pi}{2}+2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{10}+\frac{k2\pi}{5}\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
f.
\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=\sqrt{3}\)
Do \(\left\{{}\begin{matrix}sin\left(2x+\frac{\pi}{3}\right)\le1\\\sqrt{3}>1\end{matrix}\right.\) nên pt vô nghiệm
Câu g đề thiếu
Câu 2:
\(sin\left(2x+\frac{\pi}{6}\right)=\frac{2}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=arcsin\left(\frac{2}{5}\right)+k2\pi\\2x+\frac{\pi}{6}=\pi-arcsin\left(\frac{2}{5}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+\frac{1}{2}arcsin\left(\frac{2}{5}\right)+k\pi\\x=\frac{5\pi}{12}-\frac{1}{2}arcsin\left(\frac{2}{5}\right)+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\approx-0,056\left(rad\right)\\x\approx1,1\left(rad\right)\end{matrix}\right.\)