a, Ta có :
x4+8x2-9=0
x4+9x2-x2-9=0
x4-x2+9x2-9=0
x2(x2-1)+9(x2-10=0
(x2-1)(x2+9)=0
\(\Rightarrow x^2-1=0\Rightarrow x=1\)
\(\Rightarrow x^2+9=0\Rightarrow x=-3\)
b, k bt lm
b) \(\left(x^2-x\right)^2+4\left(x^2-x\right)-12=0\)
\(\Leftrightarrow\left(x^2-x+2\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+2=4\\x^2-x+2=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\loại\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)