a/ \(x^3+1+2x^2+2x=0\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^2+x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\)
b/ \(\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)-1680=0\)
\(\Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)-1680=0\)
Đặt \(x^2-11x+28=a\Rightarrow x^2-11x+30=a+2\)
Pt trở thành:
\(a\left(a+2\right)-1680=0\Leftrightarrow a^2-2a-1680=0\) \(\Rightarrow\left[{}\begin{matrix}a=42\\a=-40\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-11x+28=42\\x^2-11x+28=-40\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-11x-14=0\\x^2-11x+68=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{11+\sqrt{177}}{2}\\x=\frac{11-\sqrt{177}}{2}\end{matrix}\right.\)