Giải các phương trình :
a) \(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
b) \(\dfrac{3}{\left(x-1\right)\left(x-2\right)}+\dfrac{2}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{\left(x-2\right)\left(x-3\right)}\)
c) \(1+\dfrac{1}{x+2}=\dfrac{12}{8+x^3}\)
d) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)
Giải các phương trình sau :
a) \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2+1\right)}{x^2-4}\)
b) \(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\)
c) \(\dfrac{2}{x-1}+\dfrac{2x+3}{x^2+x+1}=\dfrac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
d) \(\dfrac{x^3-\left(x-1\right)^3}{\left(4x+3\right)\left(x-5\right)}=\dfrac{7x-1}{4x+3}-\dfrac{x}{x-5}\)
Giải các phương trình sau :
a) \(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\)
b) \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
c) \(\dfrac{5x-2}{2-2x}+\dfrac{2x-1}{2}=1-\dfrac{x^2+x-3}{1-x}\)
d) \(\dfrac{5-2x}{3}+\dfrac{\left(x-1\right)\left(x+1\right)}{3x-1}=\dfrac{\left(x+2\right)\left(1-3x\right)}{9x-3}\)
Giải các phương trình sau:
a) \(x^2+\dfrac{4x^2}{\left(x+2\right)^2}=12\)
b) \(\dfrac{x^2}{3}+\dfrac{48}{x^2}=5\left(\dfrac{x}{3}+\dfrac{4}{x}\right)\)
c) \(\left(\dfrac{x}{x-1}\right)^2+\left(\dfrac{x}{x+1}\right)^2=\dfrac{10}{9}\)
d) \(\left(\dfrac{x-1}{x}\right)^2+\left(\dfrac{x-1}{x-2}\right)^2=\dfrac{40}{9}\)
e) \(x^2+\left(\dfrac{x}{x-1}\right)^2=8\)
f) \(\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-12=0\)
g) \(x^3+\dfrac{1}{x^3}=6\left(x+\dfrac{1}{x}\right)\)
Giải các pt sau:
a)\(x^2+\dfrac{4x^2}{\left(x+2\right)^2}=12\)
b) \(\dfrac{x^2}{3}+\dfrac{48}{x^2}=5\left(\dfrac{x}{3}+\dfrac{4}{x}\right)\)
c) \(\left(\dfrac{x}{x-1}\right)^2+\left(\dfrac{x}{x+1}\right)^2=\dfrac{10}{9}\)
d) \(\left(\dfrac{x-1}{x}\right)^2+\left(\dfrac{x-1}{x-2}\right)^2=\dfrac{40}{9}\)
e) \(x^2+\left(\dfrac{x}{x-1}\right)^2=8\)
g) \(x^3+\dfrac{1}{x^3}=6\left(x+\dfrac{1}{x}\right)\)
f) \(\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-12=0\)
Giải các phương trình sau :
a) \(\dfrac{2x+1}{x-1}=\dfrac{5\left(x-1\right)}{x+1}\)
b) \(\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1\)
c) \(\dfrac{1}{x-1}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)
d) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{x^2-9}\)
Giải phương trình
\(1,\dfrac{x^2-2x-3}{x-1}+\dfrac{x^2-8x+20}{x-4}=\dfrac{x^2-4x+6}{x-2}+\dfrac{x^2-6x+12}{x-3}\)
\(2,\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot[1+\dfrac{1}{x\cdot\left(x+2\right)}]=\dfrac{31}{16}\left(x\in N\right)\)
Bt: Giải các pt sau:
a, \(\dfrac{x+3}{x+1}\) + \(\dfrac{x-2}{x}\)=\(\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
b, \(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)
c, \(\dfrac{1}{x^2+x+1}-\dfrac{1}{x^2-x+1}=\dfrac{1-2x}{x^4+x^2+1}\)
d, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
e, \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
Giải các pt sau:
a) \(x^2+\dfrac{4x^2}{\left(x+2\right)^2}=12\)
b) \(\dfrac{x^2}{3}+\dfrac{48}{x^2}=5.\left(\dfrac{x}{3}+\dfrac{4}{x}\right)\)
c) \(\left(\dfrac{x}{x-1}\right)^2+\left(\dfrac{x}{x+1}\right)^2=\dfrac{10}{9}\)
d) \(\left(\dfrac{x-1}{x}\right)^2+\left(\dfrac{x-1}{x-2}\right)^2=\dfrac{40}{9}\)
e) \(x^2+\left(\dfrac{x}{x+1}\right)^2=8\)
f) \(x^3+\dfrac{1}{x^3}=6\left(x+\dfrac{1}{x}\right)\)