a) ĐKXĐ:
Khử mẫu ta được:
⇔
⇔4x = 8
⇔x = 2.
x = 2 không thỏa ĐKXĐ.
Vậy phương trình vô nghiệm.
b) ĐKXĐ:
Khử mẫu ta được:
=
⇔
a) ĐKXĐ:
Khử mẫu ta được:
⇔
⇔4x = 8
⇔x = 2.
x = 2 không thỏa ĐKXĐ.
Vậy phương trình vô nghiệm.
b) ĐKXĐ:
Khử mẫu ta được:
=
⇔
Giải phương trình:
a) \(\dfrac{2x-5}{x+5}\) = 4
b) \(\dfrac{x^2-4}{x}\) = \(\dfrac{2x+3}{2}\)
c) \(\dfrac{2x+3}{2x-1}\) = \(\dfrac{x-3}{x+5}\)
d) \(\dfrac{3x-2}{x+7}\) = \(\dfrac{6x+1}{2x-3}\)
Giải các phương trình sau :
a) \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2+1\right)}{x^2-4}\)
b) \(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\)
c) \(\dfrac{2}{x-1}+\dfrac{2x+3}{x^2+x+1}=\dfrac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
d) \(\dfrac{x^3-\left(x-1\right)^3}{\left(4x+3\right)\left(x-5\right)}=\dfrac{7x-1}{4x+3}-\dfrac{x}{x-5}\)
Giải các phương trình:
a) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
b) \(\dfrac{8-x}{x-7}\) - 8 = \(\dfrac{1}{x-7}\)
c) \(\dfrac{1}{x-1}\) + \(\dfrac{2x}{x^2+x+1}\) = \(\dfrac{3x^2}{x^3-1}\)
d) \(\dfrac{y+5}{y^2-5y}\) - \(\dfrac{y-5}{2y^2+10y}\) = \(\dfrac{y+25}{2y^2-50}\)
Giải các phương trình sau :
a) \(\dfrac{2x+1}{x-1}=\dfrac{5\left(x-1\right)}{x+1}\)
b) \(\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1\)
c) \(\dfrac{1}{x-1}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)
d) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{x^2-9}\)
Giải các phương trình :
a) \(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
b) \(\dfrac{3}{\left(x-1\right)\left(x-2\right)}+\dfrac{2}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{\left(x-2\right)\left(x-3\right)}\)
c) \(1+\dfrac{1}{x+2}=\dfrac{12}{8+x^3}\)
d) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)
Giải các phương trình sau:
a) \(\dfrac{1}{x^2-2x+2}\) + \(\dfrac{2}{x^2-2x+3}\) = \(\dfrac{6}{x^2-2x+4}\)
b) \(\dfrac{x^2+2x+7}{\left(x+1\right)^2+2}\) = x2 + 2x + 4
Giải các phương trình sau :
a) \(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\)
b) \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
c) \(\dfrac{5x-2}{2-2x}+\dfrac{2x-1}{2}=1-\dfrac{x^2+x-3}{1-x}\)
d) \(\dfrac{5-2x}{3}+\dfrac{\left(x-1\right)\left(x+1\right)}{3x-1}=\dfrac{\left(x+2\right)\left(1-3x\right)}{9x-3}\)
Giải phương trình:
a) \(\dfrac{5}{x^2+x-6}\) - \(\dfrac{2}{x^2+4x+3}\) = \(\dfrac{-3}{2x-1}\)
b) \(\dfrac{4x^2+16}{x^2+6}\) = \(\dfrac{3}{x^2+1}\) + \(\dfrac{5}{x^2+3}\)+ \(\dfrac{7}{x^2+5}\)
a) \(\dfrac{4x-8}{2x+1}\)=0 b) 2-\(\dfrac{x}{x-2}\)=\(\dfrac{x+1}{x+2}\) c)\(\dfrac{x+2}{x-3}\)=\(\dfrac{x}{x+1}\) d) \(\dfrac{3}{x-2}\)=\(\dfrac{1}{x}\) e) \(\dfrac{x-2}{x}\)=\(\dfrac{x-3}{x+2}\) f) \(\dfrac{2x}{x+1}\)-\(\dfrac{1}{x-2}\)=\(\dfrac{2x^2-16}{\left(x+1\right)\left(x-2\right)}\) g) \(\dfrac{3x}{x-1}+\dfrac{2}{x+1}=\dfrac{3x^2}{\left(x-1\right)\left(x+1\right)}\) h) \(\dfrac{1-x}{4}=\dfrac{2x+1}{5}\) i)\(\dfrac{2-3x}{3}=\dfrac{x+4}{4}\) m) \(\dfrac{4x+3}{5}=\dfrac{3-4x}{3}\) n) \(\dfrac{7-3x}{4}-2=\dfrac{x+5}{3}\)