Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bình Trần Thị

giải các hệ phương trình : a) \(\sqrt{x+3}\) = 2\(\sqrt{y-1}\) + 2 và \(\sqrt{y+1}\) = 4 - \(\sqrt{x+3}\)    ;   b) x2 - xy = 3y và y2 - yx = 3x 

Nguyễn Thái Bình
19 tháng 12 2015 lúc 22:11

a) Cả hai phương trình đều có chung \(\sqrt{x+3}\)

pt đầu suy ra  \(\sqrt{x+3}=2\sqrt{y-1}\)

pt sau suy ra \(\sqrt{x+3}=4-\sqrt{y+1}\)

Vậy \(2\sqrt{y-1}=4-\sqrt{y+1}\), đk y > 1

\(4\left(y-1\right)=16-8\sqrt{y+1}+y+1\)

\(8\sqrt{y+1}+3y-21=0\)

Đặt \(\sqrt{y+1}=t\)

=> y = t2 - 1

=> 8t + 3(t2 -1) -21 =0

3t2 + 8t - 24 = 0

=> t = ...

=> y = t2 - 1

=> \(\sqrt{x+3}=2\sqrt{y-1}\)

=> x =...

b) Trừ hai pt cho nhau ta có:

x2 - y2 = 3(y - x)

(x - y) (x + y + 3) = 0

=> x = y hoặc x + y + 3 = 0

Xét hai trường hợp, rút x theo y rồi thay trở lại một trong hai pt ban đầu tìm ra nghiệm

 


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Lalisa Manobal
Xem chi tiết
Nguyễn Thành Trung
Xem chi tiết
Nguyễn Huỳnh Đông Anh
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Kiều Linh
Xem chi tiết
Scarlett
Xem chi tiết
Siêu Quậy Quỳnh
Xem chi tiết