Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
giải HPT
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(2x-y\right)\left(y+15\right)=2xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{4x}-3y+4z^2=-2\\\sqrt{3x}+2y-3z^2=1\\-3\sqrt{x}+y+2z^2=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3=30\\x^2y+x\left(1+y+y^2\right)+y=11\end{matrix}\right.\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
giải hệ phương trình
a)\(\left\{{}\begin{matrix}\left(x^2+1\right)\left(y^2+1\right)=10\\\left(x+y\right)\left(xy-1\right)=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x^2+y^2+2\left(xy-2\right)=0\\x^2+y^2-2xy=16\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{x}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{matrix}\right.\)
giải hệ phương trình
\(a,\left\{{}\begin{matrix}\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\\y+\frac{y}{\sqrt{x^2-1}}=\frac{35}{12}\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)
Giải hệ phương trình:
\(a,\left\{{}\begin{matrix}2x^3+x^2y+2x^2+xy+6=0\\x^2+3x+y=1\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\sqrt[3]{x+2y}=4-x-y\\\sqrt[3]{x+6}+\sqrt{2y}=2\end{matrix}\right.\)
Giải hệ phương trình sau:
a, \(\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x+y=\sqrt{2}-1\\2x-\left(\sqrt{2}-1\right)y=2\sqrt{2}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{3}x-y=1\\5x+\sqrt[]{2}y=\sqrt{3}\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}2x+y=5\\3x-2y=3\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}2+6y=\frac{x}{y}-\sqrt{x-2y}\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2-7y+2\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2\left(y+1\right)=6y-2\\x^4y^2+2x^2y^2+y\left(x^2+1\right)=12y^2-1\end{matrix}\right.\)
giải hpt: a) \(\left\{{}\begin{matrix}x^2+y^2+1=2\left(xy-x+y\right)\\x^3+3y^2+5x-12=\left(12-y\right)\sqrt{3-x}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+\sqrt{x^2+2x+2}=\sqrt{y^2+1}-y-1\\x^3-\left(3x^2+2y^2-6\right)\sqrt{2x^2-y^2-2}=0\end{matrix}\right.\)