ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
- Với \(x=-\dfrac{3}{2}\) là nghiệm của BPT
- Với \(x>-\dfrac{3}{2}\Rightarrow2x+3>0\)
\(\Rightarrow\dfrac{3\left(2x-3\right)\left(2x+3\right)}{\sqrt{3x^2-3}}\le2x+3\)
\(\Leftrightarrow\dfrac{3\left(2x-3\right)}{\sqrt{3x^2-3}}\le1\)
\(\Rightarrow3\left(2x-3\right)\le\sqrt{3x^2-3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3< 0\\\left\{{}\begin{matrix}2x-3\ge0\\9\left(2x-3\right)^2\le3x^2-3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\11x^2-36x+28\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{14}{11}\le x\le2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\dfrac{3}{2}\le x\le2\end{matrix}\right.\) \(\Rightarrow-\dfrac{3}{2}< x\le2\)
Kết hợp ĐKXĐ \(\Rightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< -1\\1< x\le2\end{matrix}\right.\)
- Với \(x< -\dfrac{3}{2}\Rightarrow2x+3< 0\)
\(\dfrac{3\left(2x-3\right)\left(2x+3\right)}{\sqrt{3x^2-3}}\le2x+3\Leftrightarrow\dfrac{3\left(2x-3\right)}{\sqrt{3x^2-3}}\ge1\)
\(\Rightarrow3\left(2x-3\right)\ge\sqrt{3x^2-3}\)
Do \(x< -\dfrac{3}{2}\Rightarrow3\left(2x-3\right)< 0\Rightarrow\) BPT vô nghiệm
Vậy nghiệm của BPT là \(\left[{}\begin{matrix}-\dfrac{3}{2}\le x< -1\\1< x\le2\end{matrix}\right.\)