ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow x^2-4x+4-6x+3-2\left(x-2\right)\sqrt{2x-1}>0\)
\(\Leftrightarrow\left(x-2\right)^2-3\left(2x-1\right)-2\left(x-2\right)\sqrt{2x-1}>0\)
Đặt \(\left\{{}\begin{matrix}x-2=a\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2-3b^2-2ab>0\)
\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)>0\)
Do \(b\ge0\) nên BPT\(\Leftrightarrow\left[{}\begin{matrix}a>3b\\a< -b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2>3\sqrt{2x-1}\\x-2< -\sqrt{2x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2>3\sqrt{2x-1}\\2-x>\sqrt{2x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+4>9\left(2x-1\right)\left(với.x\ge2\right)\\x^2-4x+4>2x-1\left(với.x< 2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-22x+13>0\\x^2-6x+5>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>11+6\sqrt{3}\\\frac{1}{2}\le x< 1\end{matrix}\right.\)