\(A=\frac{a^{2014}+2013}{2^{2014}+1}=\frac{a^{2014}+1+2002}{a^{2014}+1}=1+\frac{2012}{a^{2014}+1}\)
Để \(1+\frac{2012}{a^{2014}+1}\) đạt \(GTLN\Rightarrow\frac{2012}{a^{2014}+1}\) đạt \(GTLN\)
\(\Rightarrow a^{2014}+1\) phải nhỏ nhất
\(\Rightarrow a^{2014}+1\ge1\)
Dấu "=" xảy ra khi \(a^{2014}=0\Rightarrow a=0\)
\(\Rightarrow GTLN\) của \(A\) là \(2013\) tại \(a=0\)