Cho phương trình ax2+bx+c=0 (a≠0) có hai nghiệm x1, x2 thỏa mãn ax1+bx2+c=0. CMR: ac(a+c-3b)+b3=0.
Cho các đa thức P(x)= x3+ax2+bx+c;Q(x)=x2+2016x+2017 thỏa mãn P(x) =0 có 3 nghiệm phân biệt và P(Q(x))=0 vô nghiệm
Chứng minh P(2017)>10086
Giả sử phương trình Ax2+Bx+C=0 có 2 nghiệm x1 , x2 thì x1 + x2= \(-\dfrac{B}{A},x_1.x_2=-\dfrac{C}{A}\). Cho a khác 0 và giả sử phương trình x2 - ax - \(\dfrac{1}{2a^2}\)=0 có hai nghiệm x1,x2 . Chứng minh x14+x24 \(\ge2+\sqrt{2}\).
cho phương trình : x^2 - mx + m - 1 = 0
Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn |x1| + |x2| = 4
với 3 số thực a,b,c thỏa mãn đk a(a-b+c)<0.chứng minh ptrinh ax\(^2\)+bx+c=0 (ẩn x) luôn có hai nghiệm phân biệt
cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)
tìm m để phương trình \(x^2+\left(2-m\right)x+m-3=0\) có hai nghiệm phân biệt thỏa mãn \(\left|x_1\right|+x_2^2=2\)
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
1. cho phương trình :x2+5x+m-2=0( m là tham số)
a, giải phương trình khi m=-12
b, tìm m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{x}{x_1-1}+\dfrac{1}{x_2-1}=2\)