Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huy Phan Đình

giả hệ pt

\(\left\{{}\begin{matrix}x^3-y^3=9\\2x^2+y^2-4x+y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2\sqrt{x^2+5}=2\sqrt{y-1}+y^2\\2\sqrt{y^2+5}=2\sqrt{x-1}+x^2\end{matrix}\right.\)

Nguyễn Việt Lâm
28 tháng 6 2020 lúc 18:19

\(\left\{{}\begin{matrix}x^3-y^3-9=0\\6x^2-12x+3y^2+3y=0\end{matrix}\right.\)

\(\Rightarrow x^3-6x^2+12x-8-\left(y^3+3y^2+3y+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)^3=\left(y+1\right)^3\)

\(\Leftrightarrow x-2=y+1\Rightarrow y=x-3\)

Thế vào pt dưới:

\(2x^2+\left(x-3\right)^2-4x+x-3=0\)

\(\Leftrightarrow...\)

b/ ĐKXĐ: \(x;y\ge1\)

Trừ trên cho dưới:

\(\Rightarrow2\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right)+2\left(\sqrt{x-1}-\sqrt{y-1}\right)+x^2-y^2=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(2x+2y\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{2\left(x-y\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x-y\right)\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(\frac{2x+2y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{2}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)

\(\Leftrightarrow x-y=0\Rightarrow x=y\)

Thay vào pt đầu:

\(2\sqrt{x^2+5}=2\sqrt{x-1}+x^2\)

\(\Leftrightarrow x^2+2-2\sqrt{x^2+5}+2\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\frac{x^4-16}{x^2+2+2\sqrt{x^2+5}}+\frac{2\left(x-2\right)}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{x^2+2+2\sqrt{x^2+5}}+\frac{2\left(x-2\right)}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{\left(x+2\right)\left(x^2+4\right)}{x^2+2+2\sqrt{x^2+5}}+\frac{2}{\sqrt{x-1}+1}\right)=0\)

\(\Rightarrow x=y=2\)


Các câu hỏi tương tự
Mỹ Lệ
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Trần Thu Trang
Xem chi tiết
Trần Thu Trang
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Hoàng Cường
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
G.Dr
Xem chi tiết
Kun ZERO
Xem chi tiết