Ta có: \(F\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)(1)
Ta có: a+3c=2019
\(\Leftrightarrow3c=2019-a\)
hay \(c=\frac{2019-a}{3}\)(2)
Ta có: a+2b=2020
\(\Leftrightarrow2b=2020-a\)
\(\Leftrightarrow b=\frac{2020-a}{2}\)(3)
Thay (2) và (3) vào (1), ta được:
\(F\left(1\right)=a+\frac{2020-a}{2}+\frac{2019-a}{3}\)
\(\Leftrightarrow F\left(1\right)=\frac{6a+3\left(2020-a\right)+2\left(2019-a\right)}{6}\)