Tìm nguyên hàm của hàm số:
1. \(f\left(x\right)=\left(2x-1\right)e^{\dfrac{1}{x}}\)
2. \(f\left(x\right)=e^{3x}.3^x\)
Tìm các nguyên hàm sau:
a) \(\int (3x^2-2x-4)dx \)
b) \(\int(\sin3x-\cos4x)dx \)
c) \(\int(e^{-3x}-4^x)dx \)
d) \(\int\ln(x)dx \)
e) \(\int(x.e^x)dx \)
f) \(\int(x+1).\sin(x)dx \)
g) \(\int x.\ln(x)dx \)
Tìm nguyên hàm sau:
$\displaystyle\int
\left(3x^2 - \frac{4}{x} + \sin3x - \cos4x + e^{2x+1} + 3^{2x-2} + 3\sqrt{x^4} + \frac{1}{\cos^2x} - \frac{1}{\sin^2x}\right) dx$
cho hàm số f(x) = \(\dfrac{\left(sinx+2x\right)\left[\left(x^2+1\right)sinx-x\left(cosx+2\right)\right]}{\left(cosx+2\right)^2\sqrt{\left(X^2+1\right)^3}}\). Biết F(x) là một nguyên hàm của f(x) và F(0)=2021. Tính giá trị biểu thức T=F(-1) + F(1).
Tìm nguyên hàm của các hàm số sau :
a) \(f\left(x\right)=\dfrac{x+\sqrt{x}+1}{\sqrt[3]{x}}\)
b) \(f\left(x\right)=\dfrac{2^x-1}{e^x}\)
c) \(f\left(x\right)=\dfrac{1}{\sin^2x.\cos^2x}\)
d) \(f\left(x\right)=\sin5x.\cos3x\)
e) \(f\left(x\right)=\tan^2x\)
g) \(f\left(x\right)=e^{3-2x}\)
h) \(f\left(x\right)=\dfrac{1}{\left(1+x\right)\left(1-2x\right)}\)
cho hàm số \(f\left(x\right)=\dfrac{\left(sinx+2x\right)\left[\left(x^2+1\right)sinx-x\left(cosx+2\right)\right]}{\left(cosx+2\right)^2\sqrt{\left(x^2+1\right)^3}}\). Biết F(x) là một nguyên hàm của f(x) và F(0)=2021. Tính giá trị biểu thức T=F(-1) + F(1).
Cho hàm số f(x) thỏa mãn \(2xf''\left(x\right)+f\left(x\right)=3x^2\sqrt{x}\) biết \(f\left(1\right)=\dfrac{1}{2}\) . Tính f(4)
Chứng minh rằng các hàm số \(F\left(x\right)\) và \(G\left(x\right)\) sau đều là một nguyên hàm của cùng một hàm số :
a) \(F\left(x\right)=\dfrac{x^2+6x+1}{2x-3}\) và \(G\left(x\right)=\dfrac{x^2+10}{2x-3}\)
b) \(F\left(x\right)=\dfrac{1}{\sin^2x}\) và \(G\left(x\right)=10+\cot^2x\)
c) \(F\left(x\right)=5+2\sin^2x\) và \(G\left(x\right)=1-\cos2x\)
\(\int\dfrac{3x^2+3x+3}{x+2x}dx\)