Cho hàm số y = f(x) có đạo hàm cấp hai trên \(\left(0;+\infty\right)\) thỏa mãn: \(2xf'\left(x\right)-f\left(x\right)=x^2\sqrt{x}cosx,\forall x\in\left(0;+\infty\right)\) và \(f\left(4\Pi\right)=0\)
Tính giá trị biểu thức \(f\left(9\Pi\right)\)
Cho hàm số f(x) thỏa mãn \(\left[f'\left(x\right)\right]^2+f\left(x\right)f''\left(x\right)=15x^4+12x\) ∀x∈R biết
f(0)=f'(0)=1. Tính \(f^2\left(1\right)\)
cho hàm số f(x) = \(\dfrac{\left(sinx+2x\right)\left[\left(x^2+1\right)sinx-x\left(cosx+2\right)\right]}{\left(cosx+2\right)^2\sqrt{\left(X^2+1\right)^3}}\). Biết F(x) là một nguyên hàm của f(x) và F(0)=2021. Tính giá trị biểu thức T=F(-1) + F(1).
cho hàm số \(f\left(x\right)=\dfrac{\left(sinx+2x\right)\left[\left(x^2+1\right)sinx-x\left(cosx+2\right)\right]}{\left(cosx+2\right)^2\sqrt{\left(x^2+1\right)^3}}\). Biết F(x) là một nguyên hàm của f(x) và F(0)=2021. Tính giá trị biểu thức T=F(-1) + F(1).
Cho a là một số thực dương. Biết rằng F(x) là 1 nguyên hàm của \(f\left(x\right)=e^x\left(ln\left(ax\right)+\dfrac{1}{x}\right)\) thỏa mãn \(F\left(\dfrac{1}{a}\right)=0\) và \(F\left(2020\right)=e^{2020}\). Tìm a.
Cho hàm số y=f(x) liên tục trên R\ {0; -1} thỏa mãn f(1) =-2ln2 và
\(x\left(x+1\right)f'\left(x\right)+f\left(x\right)=x^2+x\) . Tính f(2)
Tìm nguyên hàm của các hàm số sau :
a) \(f\left(x\right)=\left(x-9\right)^4\)
b) \(f\left(x\right)=\dfrac{1}{\left(2-x\right)^2}\)
c) \(f\left(x\right)=\dfrac{x}{\sqrt{1-x^2}}\)
d) \(f\left(x\right)=\dfrac{1}{\sqrt{2x+1}}\)
e) \(f\left(x\right)=\dfrac{1-\cos2x}{\cos^2x}\)
g) \(f\left(x\right)=\dfrac{2x+1}{x^2+x+1}\)
Tìm nguyên hàm của hàm số:
1. \(f\left(x\right)=\left(2x-1\right)e^{\dfrac{1}{x}}\)
2. \(f\left(x\right)=e^{3x}.3^x\)
Kiểm tra xem hàm số nào là một nguyên hàm của hàm số còn lại trong mỗi cặp số sau :
a) \(f\left(x\right)=\ln\left(x+\sqrt{1+x^2}\right)\) và \(g\left(x\right)=\dfrac{1}{\sqrt{1+x^2}}\)
b) \(f\left(x\right)=e^{\sin x}\cos x\) và \(g\left(x\right)=e^{\sin x}\)
c) \(f\left(x\right)=\sin^2\dfrac{1}{x}\) và \(g\left(x\right)=-\dfrac{1}{x^2}\sin\dfrac{2}{x}\)
d) \(f\left(x\right)=\dfrac{x-1}{\sqrt{x^2-2x+2}}\) và \(g\left(x\right)=\sqrt{x^2-2x+2}\)
e) \(f\left(x\right)=x^2e^{\dfrac{1}{x}}\) và \(g\left(x\right)=\left(2x-2\right)e^{\dfrac{1}{x}}\)