Vì \(\frac{x}{y}=\frac{7}{9}\)\(\Rightarrow\frac{x}{7}=\frac{y}{9}\)(1)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{7}=\frac{y}{9}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{9}=\frac{z}{3}=\frac{x-y+z}{7-9+3}=-\frac{15}{1}=-15\)
\(\begin{cases}\frac{x}{7}=-15\\\frac{y}{9}=-15\\\frac{z}{3}=-15\end{cases}\Rightarrow\begin{cases}x=-105\\y=-135\\z=-45\end{cases}\)
Vậy x=-105
y=-135
z=-45
Ta có:\(\frac{x}{y}=\frac{7}{9};\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{9};\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x}{49}=\frac{y}{63};\frac{y}{63}=\frac{z}{27}\)
\(\Rightarrow\frac{x}{49}=\frac{y}{63}=\frac{z}{27}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{49}=\frac{y}{63}=\frac{z}{27}=\frac{x-y+z}{49-63+27}=\frac{-15}{13}\)
Suy ra: \(\frac{x}{49}=\frac{-15}{13}\Rightarrow x=-\frac{735}{13};\frac{y}{63}=\frac{-15}{13}\Rightarrow y=-\frac{945}{13};\frac{z}{27}=\frac{-15}{13}\Rightarrow z=-\frac{405}{13}\)
MK nhầm cái đề bài nha \(\frac{x}{y}=\frac{9}{7}\)