Có: \(\frac{x}{2}=\frac{y}{3};\frac{z}{5}=\frac{y}{7}\)
\(\Leftrightarrow\)\(\frac{x}{14}=\frac{y}{21};\frac{z}{15}=\frac{y}{21}\)
=> \(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{14+21+15}=\frac{92}{50}=\frac{46}{25}\)
\(\Rightarrow\begin{cases}x=\frac{644}{25}\\y=\frac{966}{25}\\z=\frac{138}{5}\end{cases}\)
Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{14}=\frac{y}{21}\)
\(\frac{z}{5}=\frac{y}{7}\) => \(\frac{z}{15}=\frac{y}{21}\)
=> \(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}\) = \(\frac{x+y+z}{14+21+15}\) = \(\frac{92}{50}\) = \(\frac{46}{25}\)
=> \(\begin{cases}x=\frac{644}{25}\\y=\frac{966}{25}\\z=\frac{138}{5}\end{cases}\)