1.Trục căn thức ở mẫu
\(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
2.Rút gọn
a,\(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
b,\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
c,\(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{2}{\sqrt{5}+\sqrt{2}}\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\) Rút gọn và chứng minh \(A\le\frac{2}{3}\)
\(B=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\) Rút gọn và tìm \(a\in Z\) sao cho \(A\in Z\)
\(C=\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
Chứng minh rằng giá trị của biểu thức C không phụ thuộc vào giá trị của a, b
Rút gọn
a) \(A=\left(\frac{\sqrt{10}-\sqrt{5}}{\sqrt{8}-2}-\frac{\sqrt{90}}{3}\right).\frac{1}{\sqrt{5}}\)
b) \(B=\left(\frac{\sqrt{26}-\sqrt{13}}{1-\sqrt{2}}+\frac{\sqrt{18}-\sqrt{6}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{13}-\sqrt{6}}\)
c) \(C=\frac{\sqrt{10+2\sqrt{21}}-\sqrt{5-2\sqrt{6}}}{\sqrt{9-2\sqrt{14}}}\)
Tính:
a) \(A=\sqrt{8-2\sqrt{15}}\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)
b) \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)
c) \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}+}\sqrt{3}\right):\sqrt{3}\)
d) \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)
Rút gọn biểu thức:
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}\)
\(B=\left(\frac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\frac{4}{1+\sqrt{5}}+4\right)\)
\(C=\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right):\left(1:\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(D=2\sqrt{50}-\frac{1}{\sqrt{2}-1}+4\sqrt{\frac{9}{2}}-\sqrt{3-2\sqrt{2}}\)
Thực hiện các phép tính sau:
a)\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
b) \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
c) \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d) \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
e) \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
f) \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Tìm giá trị của biểu thức;
a,\(\sqrt{5}\left(\sqrt{6}+1\right):\frac{\sqrt{2\sqrt{3}+\sqrt{2}}}{\sqrt{2\sqrt{3}-\sqrt{2}}}\)
b,\(\frac{\sqrt{3}}{1-\sqrt{\sqrt{3}+1}}+\frac{\sqrt{3}}{1+\sqrt{\sqrt{3}+1}}\)
c,\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
d,\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(A=\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right).\left(2-\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)
\(B=\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
rút gọn biểu thức
Help me!
rút gọn
a. A=\(\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
b. B=\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)