\( a)A = \dfrac{{1 + \sqrt 5 }}{{\sqrt 2 + \sqrt {3 + \sqrt 5 } }} + \dfrac{{1 - \sqrt 5 }}{{\sqrt 2 - \sqrt {3 - \sqrt 5 } }}\\ A = \dfrac{{\sqrt 2 \left( {1 + \sqrt 5 } \right)}}{{\sqrt 2 \left( {\sqrt 2 + \sqrt {3 + \sqrt 5 } } \right)}} + \dfrac{{\sqrt 2 \left( {1 - \sqrt 5 } \right)}}{{\sqrt 2 \left( {\sqrt 2 - \sqrt {3 - \sqrt 5 } } \right)}}\\ A = \dfrac{{\sqrt 2 + \sqrt {10} }}{{3 + \sqrt 5 }} + \dfrac{{\sqrt 2 - \sqrt {10} }}{{1 + \sqrt 5 }}\\ A = \dfrac{{\left( {\sqrt 2 + \sqrt {10} } \right)\left( {1 + \sqrt 5 } \right) + \left( {\sqrt 2 - \sqrt {10} } \right)\left( {3 + \sqrt 5 } \right)}}{{\left( {3 + \sqrt 5 } \right)\left( {1 + \sqrt 5 } \right)}}\\ A = \dfrac{{4\sqrt 2 }}{{8 + 4\sqrt 5 }} = - 2\sqrt 2 + \sqrt {10} \\ b)B = \left( {\dfrac{{1 - a\sqrt a }}{{1 - \sqrt a }} + \sqrt a } \right){\left( {\dfrac{{1 - \sqrt a }}{{1 - a}}} \right)^2}\\ B = \left[ {\dfrac{{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a + a} \right)}}{{1 - \sqrt a }} + a} \right]{\left[ {\dfrac{{1 - \sqrt a }}{{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a } \right)}}} \right]^2}\\ B = {\left( {1 + \sqrt a } \right)^2}.\dfrac{1}{{{{\left( {1 + \sqrt a } \right)}^2}}} = 1 \)
HỌC TỐT NHÉ!