Cho a,b>0 . Chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (1). Áp dụng cm các bđt sau:
a)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\) với a,b,c>0
b)\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\) với a,b,c>0
c)Cho a,b,c>0 tm \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\) . CM \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
d) Cho a,b,c là độ dài 3 cạnh của 1 tam giác, p là nửa chu vi .CMR:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c>0 chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) (1). Áp dụng chứng minh các BĐT sau:
a) \(\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
b) Cho x,y,z>0 tm x+y+z=1. Tìm GTLN của bt \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Cho: \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\)
CMR: (\(\frac{1}{a}-1\))(\(\frac{1}{b}-1\))(\(\frac{1}{c}-1\)) ≥ 8
Cho a,b,c,d>0. CMR nếu \(\frac{a}{b}< 1\) thì \(\frac{a}{b}< \frac{a+c}{b+c}\) (1). Áp dụng cm các bđt sau
a)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
b)\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
c)\(2< \frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}< 3\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
Bài 1 : Tìm x biết
a) \(13\frac{1}{3}\div1\frac{1}{3}=26\div\left(2x-1\right)\)
b) \(0,2:1\frac{1}{5}=\frac{2}{3}\div\left(6x+7\right)\)
c) \(\frac{37-x}{x+13}=\frac{3}{7}\)
d) \(\frac{x-1}{x+5}=\frac{6}{7}\)
e) \(2\frac{2}{\frac{3}{0,002}=}\frac{1\frac{1}{9}}{x}\)
Bài 2 : Tìm x,y,z biết:
a) \(\frac{x}{7}=\frac{4}{13}\)và x + y = 40
b) 3x = 2y , 7y = 57 và x - y + z = 32
c) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{7-4}{4}\)và 2x + 3y - z = 50
Bài 3 .
a) 6,88 : x =12:27
b) \(8\frac{1}{3}\div11\frac{2}{3}=13:\left(2x\right)\)
Giải giúp mk
Mk đng cần gấp
cho a+b+c=1 tìm gtnn
A=\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Cho:
\(\left\{{}\begin{matrix}a,b,c,d\ge0\\\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3\end{matrix}\right.\)
CMR: abcd ≤ \(\frac{1}{81}\)
chứng minh các bdt sau đúng với mọi n thuộc N*
a)\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>2-\frac{1}{n}\)
b)\(\frac{3}{4}-\frac{1}{4n}>\frac{1}{n+1}+\frac{1}{n+2}+.....+\frac{1}{2n}>\frac{13}{24}\)