\(\frac{4}{3}:0,8=\frac{2}{3}:0,1x\\ \Leftrightarrow x=\frac{4}{3}:0,8:\frac{2}{3}.0,1=\frac{4}{3}:\frac{4}{5}:\frac{2}{3}.\frac{1}{10}\\ \Leftrightarrow x=\frac{4}{3}.\frac{5}{4}.\frac{3}{2}.\frac{1}{10}=\frac{5}{20}=\frac{1}{4}\)
\(\frac{4}{3}:0,8=\frac{2}{3}:0,1x\\ \Leftrightarrow x=\frac{4}{3}:0,8:\frac{2}{3}.0,1=\frac{4}{3}:\frac{4}{5}:\frac{2}{3}.\frac{1}{10}\\ \Leftrightarrow x=\frac{4}{3}.\frac{5}{4}.\frac{3}{2}.\frac{1}{10}=\frac{5}{20}=\frac{1}{4}\)
Bài 4: Tính hợp lý
a) \(A=\left(\left|\frac{-3}{4}\right|+\left|\frac{-2}{5}\right|\right):\frac{3}{7}+\left(\frac{-3}{5}+\left|\frac{-1}{4}\right|\right):\frac{3}{7}\)
b) \(B=2\frac{5}{23}-\left(\frac{-7}{9}\right)-\left|\frac{-5}{23}\right|+\frac{12}{9}+\left|-0,75\right|\)
Bài 5 : Tìm x :
\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\left|\frac{-2}{3}\right|\)
b) \(\left|x\right|:\left(\frac{1}{9}-\frac{2}{5}\right)=\frac{-1}{2}\)
c) \(\left(x-\frac{1}{5}\right).\left(1\frac{3}{5}+2x\right)=0\)
\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
Tìm x biết:
a) | x+1,5 |= 2
b) \(\frac{2}{5}\)+| x+1 |=\(\frac{3}{4}\)
c) \(\frac{4}{5}\)-| x-\(\frac{1}{6}\) |=\(\frac{2}{3}\)
d) | x-\(\frac{2}{3}\) |+\(\frac{5}{4}\)=0
Làm giúp mk vs mk đang cần gấp nha!
Tìm x biết :
a, \(\frac{x}{28}=\frac{-4}{7}\)
b,\(/x+\frac{4}{5}/-\frac{2}{5}=\frac{3}{5}\)
\(4.\left(\frac{1}{2}-3\right)-6.\left(\frac{5}{6}x+2\right)=0\)
Tìm số nguyên x, biết
a. |x| < \(2\frac{4}{5}\)
b. |x| > \(1\frac{3}{8}\)
c. \(\frac{7}{6}\)< \(\left|x-\frac{2}{3}\right|\)< \(\frac{26}{9}\)
Tìm x, biết:
a) \(4\left|3x-1\right|+\left|x\right|-2\left|x-5\right|+7\left|x-3\right|=12\)
b) \(2\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}=\left|2\frac{1}{5}-x\right|\)
Tìm x , y , z ∈ Q : a) x + y = \(\frac{1}{2}\) ; b) y + 2 = \(\frac{1}{3}\) ; c) x+2= \(\frac{1}{4}\)
1. Tìm x, biết:
a. \(3x-|x+15|=\frac{5}{4}\)
b. \(\left|x-0,6\right|< \frac{1}{3}\)
c. \(\left|x+\frac{7}{2}\right|\ge\left|-3,5\right|\)
d. \(\left|x-1\right|\le3\frac{1}{4}\)
e. \(\left|2x-1\right|>\left|-\frac{3}{4}\right|\)