A=\(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
B=\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}-\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
rút gọn biểu thức
\(\frac{3\sqrt{2}+2\sqrt{3}}{\sqrt{2}+\sqrt{3}}-\frac{5}{1+\sqrt{6}}\)
\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
M = \(\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\frac{1}{\sqrt{6}}\)
N = \(\frac{6}{1+\sqrt{7}}+\frac{1}{\sqrt{7}}\)
O = \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{1+\sqrt{2}}-\frac{1}{2-\sqrt{3}}\)
\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
J = \(\left(1+\frac{2+\sqrt{2}}{1+\sqrt{2}}\right)\) . \(\left(1-\frac{2-\sqrt{2}}{1-\sqrt{2}}\right)\)
M = \(\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\frac{1}{\sqrt{6}}\)
N = \(\frac{6}{1+\sqrt{7}}+\frac{1}{\sqrt{7}}\)
O = \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{1+\sqrt{2}}-\frac{1}{2-\sqrt{3}}\)
Q = \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
S = \(\frac{2}{\sqrt{5}+1}-\sqrt{\frac{2}{3-\sqrt{5}}}\)
Các thầy cô, các bạn giúp em với ạ. Em cảm ơn !
a)\(\sqrt{50}-\sqrt{3}.\sqrt{6}+\frac{\sqrt{22}}{\sqrt{11}}\)
b) \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\sqrt{7+4\sqrt{3}}\)
rút gọn biểu thức:
1/ \(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
2/ \(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
3/ \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
4/ \(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
giúp minh với cần gấp lắm
1. Rút gọn
D = \(\frac{\sqrt{1+\frac{2\sqrt{2}}{3}}+\sqrt{1-\frac{2\sqrt{2}}{3}}}{\sqrt{1+\frac{2\sqrt{2}}{3}}-\sqrt{1-\frac{2\sqrt{2}}{3}}}\)
2. Chứng minh rằng:
\(\frac{a\sqrt{b}+b}{a-b}.\sqrt{\frac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}\left(\sqrt{a}+\sqrt{b}\right)=b\) với ( a > b > 0 )