a,b,c là 3 cạnh của tam giác
Áp dụng BĐT cơ bản: \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
Dấu "=" xảy ra khi \(a=b=c\)
a,b,c là 3 cạnh của tam giác
Áp dụng BĐT cơ bản: \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c >0. Chứng minh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{abc+2}\)
1. CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\)
2. Cho a, b , c >0 .CMR: \(\frac{bc}{a}+\frac{ac}{b}+\frac{ba}{c}\ge a+b+c\)
Cho a,b,c >0 abc=1. CMR \(\frac{a^4}{b^2\left(c+a\right)}+\frac{b^4}{c^2\left(a+b\right)}+\frac{c^4}{a^2\left(b+c\right)}\ge\frac{a+b+c}{2}\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=12\). Cmr: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{8}{a^2+28}+\frac{8}{b^2+28}+\frac{8}{c^2+28}\)
cho a,b,c là số thực dương thỏa mãn \(abc\le1\)
CMR:
\(\frac{a^3+1}{b\sqrt{a^2+1}}+\frac{b^3+1}{c\sqrt{b^2+1}}+\frac{c^3+1}{a\sqrt{c^2+1}}\ge\sqrt{2}\left(a+b+c\right)\)
cho a,b,c > 0 thỏa mãn a+b+c=3
Cmr: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge a^2+b^2+c^2\)
cho a , b, ,c là các số thực thỏa a+b+c = 0 chứng minh
\(\frac{a-1}{a^2+8}+\frac{b-1}{b^2+8}+\frac{c-1}{c^2+8}\ge-\frac{3}{8}\)
Cho các số dương a,b,c thỏa mãn a+b+c<= 2 .chứng minh rằng \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}\ge\frac{\sqrt{97}}{2}\)
1, cho a,b,c ≥0 chứng minh các bất đẳng thức sau:
a, (a+b)(b+c)(c+a) ≥ 8abc
b, \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c,vớia+b+c>0\)
c, \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}vớia,b,c>0\)