\(\frac{14-6\sqrt{5}+8}{\sqrt{14-6\sqrt{5}}+1}=\frac{22-6\sqrt{5}}{\sqrt{\left(3-\sqrt{5}\right)^2}+1}=\frac{22-6\sqrt{5}}{4-\sqrt{5}}=\frac{\left(22-6\sqrt{5}\right)\left(4+\sqrt{5}\right)}{16-5}=\frac{58-2\sqrt{5}}{11}\)
\(\frac{14-6\sqrt{5}+8}{\sqrt{14-6\sqrt{5}}+1}=\frac{22-6\sqrt{5}}{\sqrt{\left(3-\sqrt{5}\right)^2}+1}=\frac{22-6\sqrt{5}}{4-\sqrt{5}}=\frac{\left(22-6\sqrt{5}\right)\left(4+\sqrt{5}\right)}{16-5}=\frac{58-2\sqrt{5}}{11}\)
Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
Tính : \(\sqrt{14-4\sqrt{6}}-\frac{\sqrt{5}+1}{\sqrt{2}}+\sqrt{11+\sqrt{96}}+\sqrt{3-\sqrt{5}}\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
\(\sqrt{12-6\sqrt{3}}\)
\(\sqrt{19+8\sqrt{3}}\)
\(\sqrt{14-6\sqrt{5}}\)
tính giải chi tiết hộ mình nha
1.\(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{\sqrt{6}-\sqrt{2}}}\cdot\sqrt{\sqrt{6}+\sqrt{2}}\)
2.\(\sqrt{16-5\sqrt{7}}\left(5\sqrt{2}+\sqrt{14}\right)+\dfrac{6}{3+\sqrt{10}}\)
Chứng minh đẳng thức :
a) \(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\sqrt{2}\)
b) \(B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=8\)
1/ \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
2/ \(\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
3/ \(\sqrt{x^2+2}+\sqrt{x^2+2x+1}=1\)
a) \(\sqrt{28-2\sqrt{3}}+\sqrt{7}.\sqrt{7}+\sqrt{84}\)
b) \(\sqrt{14-6\sqrt{5}+\sqrt{14+6\sqrt{5}}}\)
Thực hiện phép tính
-\(\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
- \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
-\(\dfrac{\left(5+\sqrt{2}\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
- \(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}}\)
- \(\dfrac{\sqrt{3}}{1-\sqrt{\sqrt{3}+1}}+\dfrac{\sqrt{3}}{1+\sqrt{\sqrt{3}+1}}\)