a) \(\) Ta có : \(F\left(x\right)=5x^3-7x^2+x+7\)
\(\Rightarrow F\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7\)
\(=\left(-5\right)-7-1+7\)
\(=-6\)
Vậy : \(F\left(-1\right)=-6\)
b) Ta có : \(K\left(x\right)=F\left(x\right)-G\left(x\right)+H\left(x\right)\)
\(\Leftrightarrow K\left(x\right)=5x^3-7x^2+x+7-\left(7x^3-7x^2+2x+5\right)+\left(2x^3+4x+1\right)\)
\(\Leftrightarrow K\left(x\right)=\left(5x^3-7x^3+2x^3\right)+\left(-7x^2+7x^2\right)+\left(x-2x+4x\right)+\left(7-5+1\right)\)
\(\Leftrightarrow K\left(x\right)=3x+3\)
Vậy : \(K\left(x\right)=3x+3\)
c) Ta có : \(K\left(x\right)=3x+3\)
\(\Rightarrow\) Bậc của \(K\left(x\right)\) là 1.
Xét \(K\left(x\right)=0\Leftrightarrow3x+3=0\)
\(\Leftrightarrow3.\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy : nghiệm của đa thức \(K\left(x\right)\) là \(x=-1\)
a) \(F\left(x\right)=5x^3-7x^2+x+7\)
=> \(F\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7\)
\(F\left(-1\right)=\left(-5\right)-7+\left(-1\right)+7\)
\(F\left(-1\right)=\left(-13\right)+7\)
\(F\left(-1\right)=-6.\)
Vậy \(F\left(-1\right)=-6.\)
\(G\left(x\right)=7x^3-7x^2+2x+5\)
=> \(G\left(-\frac{1}{2}\right)=7.\left(-\frac{1}{2}\right)^3-7.\left(-\frac{1}{2}\right)^2+2.\left(-\frac{1}{2}\right)+5\)
\(G\left(-\frac{1}{2}\right)=\left(-\frac{7}{8}\right)-\frac{7}{4}+\left(-1\right)+5\)
\(G\left(-\frac{1}{2}\right)=\left(-\frac{29}{8}\right)+5\)
\(G\left(-\frac{1}{2}\right)=\frac{11}{8}.\)
Vậy \(G\left(-\frac{1}{2}\right)=\frac{11}{8}.\)
\(H\left(x\right)=2x^3+4x+1\)
=> \(H\left(0\right)=2.0^3+4.0+1\)
\(H\left(0\right)=0+0+1\)
\(H\left(0\right)=1.\)
Vậy \(H\left(0\right)=1.\)
Chúc bạn học tốt!