Bài 2. Phương trình bậc hai một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Dùng công thức nghiệm để giải các phương trình sau và kiểm tra kết quả bằng máy tính cầm tay.

a) \({x^2} - x - 20 = 0\)

b) \(6{x^2} - 11x - 35 = 0\)

c) \(16{y^2} + 24y + 9 = 0\)

d) \(3{x^2} + 5x + 3 = 0\)

e) \({x^2} - 2\sqrt 3 x - 6 = 0\)

g) \({x^2} - \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3  = 0\)

datcoder
25 tháng 10 lúc 23:52

a) \({x^2} - x - 20 = 0\)

Ta có a = 1, b = -1, c = -20

\(\Delta  = {( - 1)^2} - 4.1.( - 20) = 81 > 0\)

Vậy phương trình có hai nghiệm phân biệt là:

\({x_1} = \frac{{1 + \sqrt {81} }}{2} = 5;{x_2} = \frac{{1 - \sqrt {81} }}{2} =  - 4\)

b) \(6{x^2} - 11x - 35 = 0\)

Ta có a = 6, b = -11, c = -35

\(\Delta  = {( - 11)^2} - 4.6.( - 35) = 961 > 0\)

Vậy phương trình có hai nghiệm phân biệt là:

\({x_1} = \frac{{11 + \sqrt {961} }}{{2.6}} = \frac{7}{2};{x_2} = \frac{{11 - \sqrt {961} }}{{2.6}} =  - \frac{5}{3}.\)

c) \(16{y^2} + 24y + 9 = 0\)

Ta có a = 16, b = 24, c = 9

\(\Delta  = {24^2} - 4.16.9 = 0\)

Vậy phương trình có nghiệm kép là: \({y_1} = {y_2} =  - \frac{{24}}{{2.16}} =  - \frac{3}{4}\).

d) \(3{x^2} + 5x + 3 = 0\)

Ta có a = 3, b = 5, c = 3

\(\Delta  = {5^2} - 4.3.3 =  - 11 < 0\)

Vậy phương trình vô nghiệm.

e) \({x^2} - 2\sqrt 3 x - 6 = 0\)

Ta có a = 1, b = \( - 2\sqrt 3 \), c = -6

\(\Delta  = {\left( { - 2\sqrt 3 } \right)^2} - 4.1.( - 6) = 36 > 0\)

Vậy phương trình có hai nghiệm phân biệt là:

\({x_1} = \frac{{2\sqrt 3  + \sqrt {36} }}{2} = 3 + \sqrt 3 ;{x_2} = \frac{{2\sqrt 3  - \sqrt {36} }}{2} =  - 3 + \sqrt 3. \)

g) \({x^2} - \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3  = 0\)

Ta có a = 1, b = \( - \left( {2 + \sqrt 3 } \right)\), c = \( 2\sqrt 3 \)

\(\Delta  = {\left( {2 + \sqrt 3 } \right)^2} - 4.1.\left( { 2\sqrt 3 } \right) = 7 - 4\sqrt 3  > 0\),

\(\sqrt {\Delta} = \sqrt {7 - 4\sqrt 3} = \sqrt {4 - 4\sqrt 3 + 3} \\= \sqrt {({2 - \sqrt 3})^2} = |2 - \sqrt 3| = 2 - \sqrt 3\)

Vậy phương trình có hai nghiệm phân biệt là:

\({x_1} = \frac{{2 + \sqrt 3  + (2 - \sqrt 3)}}{2} = 2;{x_2} = \frac{{2 + \sqrt 3  - (2 - \sqrt 3) }}{2} = \sqrt 3.\)