Gọi a(m); b(m) và c(m) lần lượt là độ dài ba cạnh của tam giác(Điều kiện: a>0; b>0; c>0 và a<b<c)
Vì độ dài ba cạnh tỉ lệ với 3;4;5 nên a:b:c=3:4:5
hay \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Vì cạnh lớn nhất dài hơn cạnh nhỏ nhất là 6m nên c-a=6
Áp dụng tính chất của dãy tĩ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{6}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{3}=3\\\dfrac{b}{4}=3\\\dfrac{c}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9\left(nhận\right)\\b=12\left(nhận\right)\\c=15\left(nhận\right)\end{matrix}\right.\)
Vậy: Độ dài ba cạnh của tam giác đó lần lượt là 9m; 12m và 15m
Gọi 3 cạnh đó là a,b,c
Theo đề ta có: \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) và c - a = 6 (m)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{6}{2}=3\left(m\right)\)
Có: \(\left\{{}\begin{matrix}a=3.3=9\left(m\right)\\b=3.4=12\left(m\right)\\c=3.5=15\left(m\right)\end{matrix}\right.\)