1. Cho hàm số \(y=\dfrac{3x^2+13x+19}{x+3}\). Đường thẳng đi qua 2 điểm cực trị của đths có phương trình là:
\(A.5x-2y+13=0\)
\(B.y=3x+13\)
\(C.y=6x+13\)
\(D.2x+4y-1=0\)
2. Cho hàm số \(y=\sqrt{x^2-2x}\). Khẳng định nào sau đây là đúng?
A. Hàm số có 2 điểm cực trị
B. Hàm số đạt cực tiểu tại x=0
C. Hàm số đại cực đại tại x=2
D. Hàm số có đúng 4 điểm cực trị
3. Cho hàm số \(y=x^7-x^5\). Khẳng định nào sau đây đúng?
A. Hàm số có đúng 1 điểm cực trị
B. Hàm số có đúng 3 điểm cực trị
C. Hàm số có đúng 2 điểm cực trị
D. Hàm số có đúng 4 điểm cực trị
4. Cho hàm số \(y=f\left(x\right)\)có đạo hàm \(f'\left(x\right)=\left(x+1\right)\left(x-2\right)^2\left(x-3\right)^3\left(x+5\right)^4\)
. Hàm số \(y=f\left(x\right)\) có bao nhiêu điểm cực trị?
A. 2
B. 3
C. 4
D. 5
5. Cho hàm số \(y=\left(x^2-2x\right)^{\dfrac{1}{3}}\) . Khẳng định nào sau đây đúng?
A. Hàm số đạt cực tiểu tại x=1
B. Hàm số đạt cực đại tại x=1
C. Hàm số không có điểm cực trị
D. Hàm số có đúng 2 điểm cực trị
Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành
Bài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\) cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)
Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về cùng một phía đối với trục tung
Bài 4: Cho hàm số \(y=-x^3+2(m-1)x^2-(m^2-3m+2)x-4\)
(m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung
Bài 5: Cho hàm số \(y=-x^3+3x^2+3(m^2-1)x-3m^2-1\) (1). Tìm m để hàm số (1) có cực đại, cực tiểu, đồng thời các điểm cực đại và cực tiểu cùng với gốc tọa độ O tạo thành một tam giác vuông tại O
a) Cho \(y=2x^4+2mx^2-\dfrac{3m}{2}\). Tìm m để đồ thị hàm số có 3 điểm cực trị cùng với điểm O tạo thành 1 tứ giác nội tiếp.
b) Cho \(y=-2x^4-2mx^2+\dfrac{3m}{2}\). Tìm m để đồ thị hàm số có khoảng cách giữa 2 điểm cực đại bằng 5.
tìm cực trị của các hàm số sau:
1. \(y=\sqrt{x-3}+\sqrt{6-x}\)
2. \(y=x-3+\dfrac{9}{x-2}\)
3. \(y=x\sqrt{3-x}\)
4. \(y=\dfrac{x}{x^2+4}\)
5. \(y=\dfrac{x^2+8x-24}{x^2-4}\)
Cho hàm số \(y=2x^3+3\left(m-1\right)x^2+6\left(m-2\right)x-1\) với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có điểm cực đại và cực tiểu nằm trong khoảng (-2;3)
Cho hàm số \(y=x^3-3x^2+m^2x+m\). Tìm tất cả các giá trị của tham số m để hàm số có cực đại, cực tiểu và các điểm cực đại, cực tiểu của đồ thị hàm số đối xứng nhau qua đường thẳng d:\(y=\frac{1}{2}x-\frac{5}{2}\)
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Tìm \(a\) và \(b\) để các cực trị của hàm số
\(y=\dfrac{5}{3}a^2x^3+2ax^2-9x+b\)
đều là những số dương và \(x_0 =-\dfrac{5}{9}\) là điểm cực đại.
giúp mình vs
1. giá trị m đẻ khoảng cách từ điểm M( 0;3) đến đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số y= x^3 +3mx+1 bằng \(\dfrac{2}{\sqrt{5}}\)
2. cho h/s y= 2x^3 + 3( m-1)x^2+ 6(m-2)x-1. xác định m để h/s có điểm cực đại và cực tiểu nằm trong khoảng (-2;3)
3.cho h/s y= \(\dfrac{1}{3}x^3-\left(m+1\right)x^2+\left(2m+1\right)x-\dfrac{4}{3}\) . tìm tất cả các giá trị của tham số m>0 đẻ đò thị hàm số có điểm cực đại thuộc trục hoành