\(=\dfrac{x+x+1}{x+1}:\dfrac{x^2-1+3x^2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{x-1}{2x-1}\)
\(=\dfrac{x+x+1}{x+1}:\dfrac{x^2-1+3x^2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{x-1}{2x-1}\)
\(B=\left[\dfrac{3}{x+1}+\left(\dfrac{3}{x+1}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x+1}\right]:\dfrac{1+3x}{x^2+x}\)
Rút gọn \(E=\left[\left(\dfrac{3}{x+1}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)
Rút gọn:
\(C=\left[\left(1+\dfrac{1}{x}\right)\cdot\dfrac{2}{x^3+3x^2+3x+1}+\left(1+\dfrac{1}{x^2}\right)\cdot\dfrac{1}{1+2x+x^2}\right]:\dfrac{x-1}{x^3}\)
Cho biểu thức:
A\(=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
a/ Rút gọn A
b/ Tìm x ∈ Z để A nguyên
Rút gọn : \(\dfrac{x^2+1}{3x}:\dfrac{x^2+1}{x-1}:\dfrac{x^3-1}{x^2+x}:\dfrac{x^2+2x+1}{x^2+x+1}\)
Tính
\(B=\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
Rút gọn :
A= ( \(\dfrac{x+2}{32}+\dfrac{2}{x+1}-3\) ).\(\dfrac{x+1}{2-4x}-\dfrac{3x-x^2+1}{3x}\)
\(C=\left(\dfrac{1}{3}+\dfrac{3}{x^2-3x}\right):\left(\dfrac{x^2}{27-3x^2}+\dfrac{1}{x+3}\right)\)
Rút gọn \(\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]:\dfrac{x^2+x}{x^3+x}\)