\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}=x+\sqrt{x}-x+\sqrt{x}=2\sqrt{x}\)