Tìm GTNN
a) \(y=\sqrt{x^3+2\left(1+\sqrt{x^3+1}\right)}+\sqrt{x^3+2\left(1-\sqrt{x^3+1}\right)}\)
b) \(f\left(x\right)=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1
c) \(y=\dfrac{x-2017}{\sqrt{x-2018}}\)
Cho x,y,z > 0 thỏa mãn xy + yz + xz = 1 . Chứng minh \(\dfrac{27}{4}\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\ge6\sqrt{3}\)
3)a) Áp dụng BĐT Bunyakovsky 2 lần, ta có:
\(\left(1+x^2\right)\left(1+y^2\right)\ge\left(x+y\right)^2\)
\(\left(1+x^2\right)\left(1+y\right)^2\ge\left(1+xy\right)^2\)
Nhân vế theo vế rồi khai phương ta được đpcm.
b) \(\dfrac{a^2+b^2}{ab}+\dfrac{\sqrt{ab}}{a+b}\ge\dfrac{\left(a+b\right)^2}{2ab}+\dfrac{4\sqrt{ab}}{a+b}+\dfrac{4\sqrt{ab}}{a+b}-\dfrac{7\sqrt{ab}}{a+b}\ge3\sqrt[3]{\dfrac{\left(a+b\right)^2}{2ab}.\dfrac{4\sqrt{ab}}{a+b}.\dfrac{4\sqrt{ab}}{a+b}}-\dfrac{7}{2}=3.2-\dfrac{7}{2}=\dfrac{5}{2}\)
Lưu ý: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\dfrac{\sqrt{ab}}{a+b}\le\dfrac{1}{2}\)
1.2) \(a^3-3a^2+8a=9\Leftrightarrow\left(a-1\right)^3+5a-8=0\)
\(b^3-6b^2+17b=15\Leftrightarrow\left(b-2\right)^3+5b-7=0\)
Cộng vế theo vế, áp dụng HĐT cho 2 cái mũ 3 rồi suy ra được a+b=3
1.1 Phương trình tương đương \(x^2-2x+1=2-x\sqrt{x-\dfrac{1}{x}}\)
Chia cả 2 vế cho x, chuyển vế, rút gọn, ta được
\(\left(x-\dfrac{1}{x}\right)+\sqrt{x-\dfrac{1}{x}}-2=0\)
Đặt \(\sqrt{x-\dfrac{1}{x}}=t\ge0\) thì ta có:
\(t^2+t-2=0\Rightarrow\)Chọn t=1 vì \(t\ge0\)
\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=1\) giải ra kết luận được 2 nghiệm \(x_1=\dfrac{1+\sqrt{5}}{2};x_2=\dfrac{1-\sqrt{5}}{2}\)
Bài 2: Bó tay nha con ngoan^^
Mấy CTV đừng xóa, để người cần đọc đã ;V
Giải bpt
\(\sqrt{\dfrac{x^4+x^2+1}{x\left(x^2+1\right)}}\ge\sqrt{\dfrac{x^2+x+1}{x^2+1}}+2-\dfrac{x^2+1}{x}\)
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
\(\sqrt{x+y\left(x-1\right)}+\sqrt{x}=y+\sqrt{y}\\ \left(x-1\right)^2+y\sqrt{\left(x-\dfrac{1}{y}\right)^3}=2\)
Giải pt
a) \(\sqrt[3]{81x-8}=x^3-2x^2+\dfrac{4}{3}x-2\)
b) \(\left(x+1\right)\left(\sqrt{x^2+2}+\sqrt{x^2+2x+3}\right)>\sqrt{x^2+2}-2x-1\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)
\(\sqrt{a^2+ab+c^2}\ge\dfrac{\sqrt{3}}{2}\left(x+y\right)\)