gọi biểu thc trên là B
đặt nhân tử chung từng phần nhỏ ta đc
B =1-2=-1
bài này đề là tính gt bt đk ko
\(\left(1\right)\Leftrightarrow\dfrac{\sqrt{3}.\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\dfrac{2+2\sqrt{2}}{1+\sqrt{2}}\)
\(=\sqrt{3}-2\)
gọi biểu thc trên là B
đặt nhân tử chung từng phần nhỏ ta đc
B =1-2=-1
bài này đề là tính gt bt đk ko
\(\left(1\right)\Leftrightarrow\dfrac{\sqrt{3}.\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\dfrac{2+2\sqrt{2}}{1+\sqrt{2}}\)
\(=\sqrt{3}-2\)
\(\dfrac{6-\sqrt{6}}{\sqrt{6}-1}+\dfrac{6-\sqrt{6}}{\sqrt{6}}\)
\(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)
\(\left(\dfrac{15}{3-\sqrt{3}}-\dfrac{2}{1-\sqrt{3}}+\dfrac{3}{\sqrt{3}-2}\right):\sqrt{28+10\sqrt{3}}\)
thực hiện phép tính:
1, \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
2,\(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}+\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\)
3,\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}+\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}\)
4,\(\dfrac{3-\sqrt{3}}{2\sqrt{3}-1}+\dfrac{3+\sqrt{3}}{2\sqrt{3}-1}\)
5,\(\dfrac{2\sqrt{3}-4}{\sqrt{3}-1}+\dfrac{2\sqrt{2}-1}{\sqrt{2}-1}-\dfrac{1+\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)
Rút gọn biểu thức
\(\dfrac{1}{3-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-2}\)
Tính:
a) \(\dfrac{\sqrt{7}-5}{2}-\dfrac{6-2\sqrt{7}}{4}+\dfrac{6}{\sqrt{7}-2}-\dfrac{5}{4+\sqrt{7}}\)
b) \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)
c) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
d) \(\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
thực hiện phép tính
A=\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2-\sqrt{2-\sqrt{3}}}}\)
B=\(\dfrac{6+4\sqrt{2}}{\sqrt{2+\sqrt{6+4\sqrt{2}}}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)
thực hiện phép tính
a, \(5\sqrt{a}+6\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{4}{a}}+\sqrt{5}\left(a>0\right)\)
b, \(\dfrac{\sqrt{3}+2}{\sqrt{3}-2}-\dfrac{\sqrt{3}-2}{\sqrt{3}+2}+\dfrac{8\sqrt{6}-8\sqrt{3}}{\sqrt{2}-1}\)
Giải phương trình
a, \(\sqrt{1-4x+4x^2}-2=x\)
câu 1 rút gọn
A=\(\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{3}-\sqrt{2}}\)
B=\(\dfrac{2}{\sqrt{3}-\sqrt{5}}+\dfrac{3-2\sqrt{3}}{\sqrt{3}-2}\)
C = \(\dfrac{\sqrt{2}+1}{\sqrt{5+2\sqrt{6}}}+\dfrac{2}{\sqrt{8}+2\sqrt{15}}\)
Câu 2 cho pt
B= \(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
a, tìm ĐKXĐ và rút gọn
b, tính B khi x =\(3+2\sqrt{2}\)
c, tìm x để B nguyên
1)\(\sqrt{12}\)\(-\)\(\sqrt{27}\)\(+\)\(\sqrt{48}\)
2)(\(\sqrt{24}+\sqrt{20}-\sqrt{80}\))\(\div\)5
3)2\(\sqrt{27}-\sqrt{\dfrac{16}{3}}\)\(-\)\(\sqrt{48}-\)\(\sqrt{8\dfrac{1}{3}}\)
4) \(\dfrac{1}{\sqrt{5}-\sqrt{3}}\)\(-\)\(\dfrac{1}{\sqrt{5+\sqrt{3}}}\)
a.(\(\sqrt{6}+\sqrt{2}\) ).(\(\sqrt{3}-\sqrt{2}\) ).\(\sqrt{\sqrt{3}+2}\)
b.\(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)