Ta có: \(\dfrac{2x}{3}\)=\(\dfrac{3y}{4}\)=\(\dfrac{4z}{5}\)
=> \(\dfrac{12x}{18}\)=\(\dfrac{12y}{16}\)=\(\dfrac{12z}{15}\)
Áp dụng công thức vào dãy tỉ số bằng nhau ta có:
\(\dfrac{12x}{18}\)=\(\dfrac{12y}{16}\)=\(\dfrac{12z}{15}\)= \(\dfrac{12z+12y+12z}{18+16+15}\)= \(\dfrac{12\left(x+y+z\right)}{49}\)=12
=>
\(\dfrac{12x}{18}\) =12=> 12x= 216=>x=18
\(\dfrac{12y}{16}\)=12=> 12y= 192=>y=16
\(\dfrac{12z}{15}\)=12=> 12z=180=>z=15
Vậy....
Chúc bạn học tốt
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
\(\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(=\dfrac{12x+12y+12z}{18+16+15}\)
\(=\dfrac{12\left(x+y+z\right)}{49}\)
\(=\dfrac{12.49}{49}=12\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x}{3}=12\Rightarrow2x=36\Rightarrow x=18\\\dfrac{3y}{4}=12\Rightarrow3y=48\Rightarrow y=16\\\dfrac{4z}{5}=12\Rightarrow4z=60\Rightarrow z=15\end{matrix}\right.\)
Ta có:
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{2x}{3.12}=\dfrac{3y}{4.12}=\dfrac{4z}{5.12}\)
\(\Rightarrow\) \(\dfrac{x}{18}=\dfrac{y}{16}=\dfrac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{18}=\dfrac{y}{16}=\dfrac{z}{15}=\dfrac{x+y+z}{18+16+15}=\dfrac{49}{49}=1\)
Suy ra:
\(\dfrac{x}{18}=\)1 \(\Rightarrow\) x = 1.18 = 18
\(\dfrac{x}{16}=1\)\(\Rightarrow\) y = 1.16 = 16
\(\dfrac{z}{15}\) = 1 \(\Rightarrow\) z = 1.15 = 15
Vậy x = 18; y = 16; z= 15